Download Complex hyperbolic geometry by William M. Goldman PDF

By William M. Goldman

This can be the 1st complete therapy of the geometry of complicated hyperbolic area, a wealthy region of study with a variety of connections to different branches of arithmetic, together with Riemannian geometry, advanced research, symplectic and phone geometry, Lie teams, and harmonic research.

Show description

Read or Download Complex hyperbolic geometry PDF

Similar geometry and topology books

Arithmetic Algebraic Geometry. Proc. conf. Trento, 1991

This quantity includes 3 lengthy lecture sequence via J. L. Colliot-Thelene, Kazuya Kato and P. Vojta. Their issues are respectively the relationship among algebraic K-theory and the torsion algebraic cycles on an algebraic sort, a brand new method of Iwasawa thought for Hasse-Weil L-function, and the purposes of arithemetic geometry to Diophantine approximation.

The Theory Of The Imaginary In Geometry: Together With The Trigonometry Of..

Книга the speculation Of The Imaginary In Geometry: including The Trigonometry Of. .. the speculation Of The Imaginary In Geometry: including The Trigonometry Of The Imaginary Книги Математика Автор: J. L. S. Hatton Год издания: 2007 Формат: djvu Издат. :Kessinger Publishing, LLC Страниц: 220 Размер: 6,1 Mb ISBN: 0548805520 Язык: Английский0 (голосов: zero) Оценка:J.

Additional info for Complex hyperbolic geometry

Example text

34 N. 5 1) Suppose that : CU → CU is a contact Weyl diffeomorphism which induces the identity map on the base space. Then, there exists uniquely a Weyl function f # (ν 2 ) of the form f # = f 0 + ν 2 f +# (ν 2 ) ( f 0 ∈ R, f + (ν 2 ) ∈ C ∞ (U )[[ν 2 ]]), 1 (15) such that = ead ν { f0 +ν f+ (ν )} . 2) If induces the identity map on WU , then there exists a unique element c(ν 2 ) ∈ 1 2 R[[ν 2 ]] with c(ν 2 ) = c(ν 2 ), such that 5 = ead ν c(ν ) . 5, we have the following. 6 For any modified contact Weyl diffeomorphism : CU → CU which induces the identity map on the base space, there exists a Weyl function f # (ν 2 ) of the form f # (ν 2 ) = f 0 + ν 2 f +# (ν 2 ) ( f 0 ∈ R, f + (ν 2 ) ∈ C ∞ (U )[[ν 2 ]]), and smooth function g(ν 2 ) ∈ C ∞ (U )[[ν 2 ]] such that 1 = ead( ν {g(ν 2 )+ f # (ν 2 )}) (16) .

42]). However, it was already known in [31] that a Banach–Lie group acting effectively on a finite dimensional smooth manifold is necessarily finite dimensional. So there is no way to model the diffeomorphism group on a Banach space as a manifold. Under the situation above, at the end of the 1960s, Omori initiated the theory of infinite-dimensional Lie groups, called “ILB-Lie groups”, beyond Banach–Lie groups, taking ILB-chains as model spaces in order to treat the diffeomorphism group on a manifold (see [32] for the precise definition).

For example, Etingof and Kazhdan proved every Poisson–Lie group can be quantized in the sense above, and investigated quantum groups as deformation quantization of Poisson–Lie groups. After their works, for a while, there were no specific developments for existence problems of deformation quantization on any Poisson manifold. The situation drastically changed when M. Kontsevich [10] proved his celebrated formality theorem. As a collorary, he showed that deformation quantization exists on any Poisson manifold.

Download PDF sample

Download Complex hyperbolic geometry by William M. Goldman PDF
Rated 4.60 of 5 – based on 46 votes